Projection Theorems for the R\'enyi Divergence on $\alpha$-Convex Sets
نویسندگان
چکیده
This paper studies forward and reverse projections for the Rényi divergence of order α ∈ (0,∞) on α-convex sets. The forward projection on such a set is motivated by some works of Tsallis et al. in statistical physics, and the reverse projection is motivated by robust statistics. In a recent work, van Erven and Harremoës proved a Pythagorean inequality for Rényi divergences on α-convex sets under the assumption that the forward projection exists. Continuing this study, a sufficient condition for the existence of forward projection is proved for probability measures on a general alphabet. For α ∈ (1,∞), the proof relies on a new Apollonius theorem for the Hellinger divergence, and for α ∈ (0, 1), the proof relies on the Banach-Alaoglu theorem from functional analysis. Further projection results are then obtained in the finite alphabet setting. These include a projection theorem on a specific α-convex set, which is termed an α-linear family, generalizing a result by Csiszár for α 6= 1. The solution to this problem yields a parametric family of probability measures which turns out to be an extension of the exponential family, and it is termed an α-exponential family. An orthogonality relationship between the α-exponential and α-linear families is established, and it is used to turn the reverse projection on an α-exponential family into a forward projection on a α-linear family. This paper also proves a convergence result of an iterative procedure used to calculate the forward projection on an intersection of a finite number of α-linear families.
منابع مشابه
Projection Theorems for the Rényi Divergence on $α$-Convex Sets
This paper studies forward and reverse projections for the Rényi divergence of order α ∈ (0,∞) on α-convex sets. The forward projection on such a set is motivated by some works of Tsallis et al. in statistical physics, and the reverse projection is motivated by robust statistics. In a recent work, van Erven and Harremoës proved a Pythagorean inequality for Rényi divergences on α-convex sets und...
متن کاملFixed point theorems for $alpha$-$psi$-contractive mappings in partially ordered sets and application to ordinary differential equations
In this paper, we introduce $alpha$-$psi$-contractive mapping in partially ordered sets and construct fixed point theorems to solve a first-order ordinary differential equation by existence of its lower solution.
متن کاملSome results on functionally convex sets in real Banach spaces
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition o...
متن کاملModelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملVariational inequalities on Hilbert $C^*$-modules
We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory on Hilbert $C^*$-modules is studied.
متن کامل